Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2401171, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497304

RESUMO

Technologies that can simultaneously generate electricity and desalinate seawater are highly attractive and required to meet the increasing global demand for power and clean water. Here, a bifunctional solar evaporator that features continuous electric generation in seawater without salt accumulation is developed by rational design of polyelectrolyte hydrogel-functionalized photothermal sponge. This evaporator not only exhibits an unprecedentedly high water evaporation rate of 3.53 kg m-2 h-1along with 98.6% solar energy conversion efficiency but can also uninterruptedly deliver a voltage output of 0.972 V and a current density of 172.38 µA cm-2 in high-concentration brine over a prolonged period under one sun irradiation. Many common electronic devices can be driven by simply connecting evaporator units in series or in parallel without any other auxiliaries. Different from the previously proposed power generation mechanism, this study reveals that the water-enabled proton concentration fields in intermediate water region can also induce an additional ion electric field in free water region containing solute, to further enhance electricity output. Given the low-cost materials, simple self-regeneration design, scalable fabrication processes, and stable performance, this work offers a promising strategy for addressing the shortages of clean water and sustainable electricity.

2.
Adv Mater ; : e2313090, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385793

RESUMO

In the last decade, interfacial solar steam generation (ISSG), powered by natural sunlight garnered significant attention due to its great potential for low-cost and environmentally friendly clean water production in alignment with the global decarbonization efforts. This review aims to share the knowledge and engage with a broader readership about the current progress of ISSG technology and the facing challenges to promote further advancements toward practical applications. The first part of this review assesses the current strategies for enhancing the energy efficiency of ISSG systems, including optimizing light absorption, reducing energy losses, harvesting additional energy, and lowering evaporation enthalpy. Subsequently, the current challenges faced by ISSG technologies, notably salt accumulation and bio-fouling issues in practical applications, are elucidated and contemporary methods are discussed to overcome these challenges. In the end, potential applications of ISSG, ranging from initial seawater desalination and industrial wastewater purification to power generation, sterilization, soil remediation, and innovative concept of solar sea farm, are introduced, highlighting the promising potential of ISSG technology in contributing to sustainable and environmentally conscious practices. Based on the review and in-depth understanding of these aspects, the future research focuses are proposed to address potential issues in both fundamental research and practical applications.

3.
Inorg Chem ; 63(3): 1550-1561, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38180825

RESUMO

High pseudocapacitive activity of hydrated tungsten oxides (WO3·xH2O, x = 1 or 2) makes them promising materials for supercapacitors (SCs). During their synthesis, additives such as complexing agents and surfactants generally can only affect the morphology and/or size of the products. Here, we demonstrate that not only morphology and size of WO3·xH2O were affected, its phase composition could also change from WO3·2H2O to WO3·H2O simply by increasing the amount of sodium dodecyl sulfate (SDS) during its anodization synthesis. To the best of our knowledge, such a phenomenon has not been reported before. In addition, SDS introduced a special structure to the products, i.e., WO3·xH2O nanoplatelets constructed from nanoparticle multilayers with abundant nanogaps between the multilayers, which further arranged into nanoflowers with increased amounts of SDS. Benefiting from such a structure, low internal resistance, enhanced stability, and fast redox kinetics, the as-obtained WO3·xH2O/W-3 self-supporting electrode showed a high volumetric specific capacitance of 1402.92 F cm-3 and good cycling stability (a capacity retention of 106% after 10 000 cycles). In addition, an all-solid-state asymmetric SC device based on WO3·xH2O/W-3 delivered high a volumetric energy density of 44.0 mW h cm-3 at 0.5 W cm-3. Our method demonstrates a potential way to fabricate excellent self-supporting electrodes for SCs.

4.
Langmuir ; 39(41): 14737-14747, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37794656

RESUMO

Solar interfacial evaporation (SIE) by leveraging photothermal conversion could be a clean and sustainable solution to the scarcity of fresh water, decontamination of wastewater, and steam sterilization. However, the process of salt crystallization on photothermal materials used in SIE, especially from saltwater evaporation, has not been completely understood. We report the temporal and spatial evolution of salt crystals on the photothermal layer during SIE. By using a typical oil lamp evaporator, we found that salt crystallization always initiates from the edge of the evaporation surface of the photothermal layer due to the local fast flux of the vapor to the surroundings. Interestingly, the salt crystals exhibit either compact or loose morphology, depending on the location and evaporation duration. By employing a suite of complementary analytical techniques of Raman and infrared spectroscopy and temperature mapping, we followed the evolution and spatial distribution of salt crystals, interfacial water, and surface temperature during evaporation. Our results suggested that the compact crystal structure may emerge from the recrystallization of salt in an initially porous structure, driven by continuous water evaporation from the porous and loose crystals. The holistic view provided in this study may lay the foundation for effective strategies for mitigation of the negative impact of salt crystallization in solar evaporation.

5.
ACS Appl Mater Interfaces ; 15(37): 43745-43755, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37695646

RESUMO

TiNb2O7 has attracted extensive attention from lithium-ion battery researchers due to its superior specific capacity and safety. However, its poor ion conductivity and electron conductivity hinder its further development. To improve the ion/electron transport of TiNb2O7, we report that chlorine doping and oxygen vacancy engineering regulate the energy band and crystal structure simultaneously through a simple solid-phase method. NH4Cl was used to realize Cl- doping and oxygen vacancy production. A Rietveld refinement demonstrates an effective substitution of Cl in the O sites of Nb-O octahedra, with an enlarged crystal plane spacing. The oxygen vacancies provide more active sites for lithium intercalation. The diffusion coefficient of Li+ is inceased from 2.39 × 10-14 to 1.50 × 10-13 cm2 s-1, which reveals the positive influence of Cl- doping and oxygen vacancies on the promoted Li+ transport behavior. Charge compensation is introduced by the doping of Cl- and the generation of oxygen vacancies, leading to the formation of Ti3+ and Nb4+ and the adjustment of the electronic structure. DFT calculations reveal that TiNb2O7 with Cl- doping and an O vacancy shows a metallic property with a finite value at the Fermi level, which is conducive to electron transfer in the electrode material. Benefiting from these advantages, the modified TiNb2O7 presents superior rate performance with a commendable capacity of 172.82 mAh g-1 at 50 C. This work provides guidance to design high-performance anode materials for high-rate lithium-ion batteries.

6.
Small ; 19(48): e2303908, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37507818

RESUMO

Porous-structured evaporators have been fabricated for achieving a high clean water throughput due to their maximized surface area. However, most of the evaporation surfaces in the porous structure are not active because of the trapped vapor in pores. Herein, a three-dimensional (3D) cylindrical aerogel-based photothermal evaporator with a disordered interconnected hierarchical porous structure is developed via a Pickering emulsion-involved polymerization method. The obtained cotton cellulose/aramid nanofibers/polypyrrole (CAP) aerogel-based evaporator achieved all-cold evaporation under 1.0 sun irradiation, which not only completely eliminated energy loss via radiation, convection, and conduction, but also harvested massive extra energy from the surrounding environment and bulk water, thus significantly increasing the total energy input for vapor generation to deliver an extremely high evaporation rate of 5.368 kg m-2 h-1 . In addition, with the external convective flow, solar steam generation over the evaporator can be dramatically enhanced due to fast vapor diffusion out of its unique opened porous structure, realizing an ultrahigh evaporation rate of 18.539 kg m-2 h-1 under 1.0 sun and 4.0 m s-1 . Moreover, this evaporator can continuously operate with concentrated salt solution (20 wt.% NaCl). This work advances rational design and construction of solar evaporator to promote the application of solar evaporation technology in freshwater production.

7.
J Colloid Interface Sci ; 637: 489-499, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36724663

RESUMO

HYPOTHESIS: Particle transport by a temperature gradient is prospective in many biomedical applications. However, the prevalence of boundary confinement in practical use introduces synergistic effects of thermophoresis and thermo-osmosis, causing controversial phenomena and great difficulty in understanding the mechanisms. EXPERIMENTS: We developed a microfluidic chip with a uniform temperature gradient and switchable substrate hydrophilicity to measure the migrations of various particles (d = 200 nm - 2 µm), through which the effects of particle thermophoresis and thermo-osmotic flow from the substrate surface were decoupled. The contribution of substrate hydrophilicity on thermo-osmosis was examined. Thermophoresis was measured to clarify its dependence on particle size and hydrophilicity. FINDINGS: This paper reports the first experimental evidence of a large enthalpy-dependent thermo-osmotic mobility χ âˆ¼ ΔH on a hydrophobic polymer surface, which is 1-2 orders of magnitude larger than that on hydrophilic surfaces. The normalized Soret coefficient for polystyrene particles, ST/d = 18.0 K-1µm-1, is confirmed to be constant, which helps clarify the controversy of the size dependence. Besides, the Soret coefficient of hydrophobic proteins is approximately-four times larger than that of hydrophilic extracellular vesicles. These findings suggest that the intrinsic slip on the hydrophobic surface could enhance both surface thermo-osmosis and particle thermophoresis.

8.
Sci Bull (Beijing) ; 67(15): 1572-1580, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546285

RESUMO

Using minimal photothermal material to achieve maximum evaporation rate is extremely important for practical applications of interfacial solar evaporation technology. In this work, we found that with the increase in the size of evaporation surfaces, the evaporation rate decreased. Both experimental and numerical simulation results confirmed that when the evaporation surface size increased, the middle portion of the evaporation surface acted as a "dead evaporation zone" with little contribution to water evaporation. Based on this, the middle portion of the evaporation surface was selectively removed, and counterintuitively, both the evaporation rate and vapor output were increased due to the re-configured and enhanced convection above the entire evaporation surface. As such, this work developed an important strategy to achieve a higher evaporation rate and increased vapour output while using less material.


Assuntos
Terapia de Aceitação e Compromisso , Vapor , Gases , Água , Simulação por Computador
9.
Angew Chem Int Ed Engl ; 61(50): e202212355, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36259317

RESUMO

Photocatalytic performance can be optimized via introduction of reactive sites. However, it is practically difficult to engineer these on specific photocatalyst surfaces, because of limited understanding of atomic-level structure-activity. Here we report a facile sonication-assisted chemical reduction for specific facets regulation via oxygen deprivation on Bi-based photocatalysts. The modified Bi2 MoO6 nanosheets exhibit 61.5 and 12.4 µmol g-1 for CO and CH4 production respectively, ≈3 times greater than for pristine catalyst, together with excellent stability/reproducibility of ≈20 h. By combining advanced characterizations and simulation, we confirm the reaction mechanism on surface-regulated photocatalysts, namely, induced defects on highly-active surface accelerate charge separation/transfer and lower the energy barrier for surface CO2 adsorption/activation/reduction. Promisingly, this method appears generalizable to a wider range of materials.

10.
Small ; 18(46): e2204603, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36135971

RESUMO

Power generation by converting energy from the ambient environment has been considered a promising strategy for developing decentralized electrification systems to complement the electricity supply for daily use. Wet gases, such as water evaporation or moisture in the atmosphere, can be utilized as a tremendous source of electricity by emerging power generation devices, that is, moisture-enabled-electric nanogenerators (MEENGs). As a promising technology, MEENGs provided a novel manner to generate electricity by harvesting energy from moisture, originating from the interactions between water molecules and hydrophilic functional groups. Though the remarkable progress of MEENGs has been achieved, a systematic review in this specific area is urgently needed to summarize previous works and provide sharp points to further develop low-cost and high-performing MEENGs through overcoming current limitations. Herein, the working mechanisms of MEENGs reported so far are comprehensively compared. Subsequently, a systematic summary of the materials selection and fabrication methods for currently reported MEENG construction is presented. Then, the improvement strategies and development directions of MEENG are provided. At last, the demonstrations of the applications assembled with MEENGs are extracted. This work aims to pave the way for the further MEENGs to break through the performance limitations and promote the popularization of future micron electronic self-powered equipment.


Assuntos
Fontes de Energia Elétrica , Eletricidade , Eletrônica , Água
11.
Dalton Trans ; 51(13): 5127-5137, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35266495

RESUMO

Effective dispersion of carbon nanotubes (CNTs) is of great importance to achieve their intrinsic performance. Normally, it is believed that CNT dispersion is decided by interactions between CNTs and their dispersants, while other interactions are often neglected. Herein, three ionic surfactants, sodium dodecyl sulfate (SDS), dodecyl dimethyl betaine (BS-12) and cetyltrimethylammonium bromide (CTAB), are used to disperse CNTs in a ternary composite, i.e., poly(p-phenylenediamine)-phosphomolybdic acid@reduced graphene oxide (DMoG), respectively, leading to three different DMoGC composites. It has been found that the CNT dispersion in DMoGC was mainly controlled by electrostatic interactions between the surfactants and DMoG, which further exerted vital influences on the constitution, content, morphology, porous structure and supercapacitive performance of the DMoGC composites. Among the three surfactants, cationic CTAB showed the best CNT dispersion, while amphoteric BS-12 could hardly disperse CNTs in DMoGC, leading to DMoGC-CTAB with a 2 times larger specific surface area (152.3 m2 g-1) and 1.5 times higher specific capacitance (422 F g-1) than those of DMoGC-(BS-12). Our study can provide valuable guidelines for selecting/designing effective dispersants to prepare multi-component composites containing uniformly dispersed CNTs.

12.
Water Res ; 212: 118099, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35077941

RESUMO

Interfacial solar steam generation is an efficient way to produce freshwater from saline water. This technology was further harnessed here for simultaneous saline soil remediation and enhanced agricultural sustainability. An interfacial solar evaporation and planting system was designed that uses treated seawater for saline soil washing and agricultural irrigation. In outdoor experiments the evaporator realized high freshwater production (10.95 kg m-2 day-1) with a soil washing efficiency 3 times greater than traditional distillation. Post treatment plant assays showed that initially highly saline soils could be restored to functional agricultural soils with germination rates of 65% after soil washing, where solar evaporation could continuously provide irrigation water for plant growth. This system is fully automated and uses only solar energy and seawater for saline soil remediation and irrigation. The development of this system provides a potentially useful solution to alleviate global problems associated with water scarcity, soil salinization, and desertification.


Assuntos
Purificação da Água , Agricultura , Água do Mar , Solo , Luz Solar
13.
Adv Mater ; 34(10): e2108232, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34963016

RESUMO

Solar anti-/deicing can solve icing problems by converting sunlight into heat. One of the biggest problems, which has long been plaguing the design of solar anti-/deicing surfaces, is that photothermal materials are always lightproof and appear black, because of the mutual exclusiveness between generating heat and retaining transparency. Herein, a highly transparent and scalable solar anti-/deicing surface is reported, which enables the coated glass to exhibit high transparency (>77% transmittance at 550 nm) and meanwhile causes a >30 °C surface temperature increase relative to the ambient environment under 1.0 sun illumination. Such a transparent anti-/deicing surface can be fabricated onto a large class of substrates (e.g., glass, ceramics, metals, plastics), by applying a solid omniphobic slippery coating onto layer-by-layer-assembled ultrathin MXene multilayers. Hence, the surface possesses a self-cleaning ability to shed waterborne and oil-based liquids thanks to residue-free slipping motion. Passive anti-icing and active deicing capabilities are, respectively, obtained on the solar thermal surface, which effectively prevents water from freezing and simultaneously melts pre-formed ice and thick frost. The self-cleaning effect enables residue-free removal of unfrozen water and interfacially melted ice/frost to boost the anti-/deicing efficiency. Importantly, the surface is capable of self-healing under illumination to repair physical damage and chemical degradation.

14.
ACS Nano ; 15(6): 10366-10376, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34110789

RESUMO

Improving evaporation rate is extremely important to promote the application of solar steam generation in clean water production through seawater desalination. However, the theoretical evaporation rate limit of a normal two-dimensional (2D) photothermal evaporator is only about 1.46 kg m-2 h-1. While 3D evaporators can break the limit, they require much more raw materials. In this work, an effective approach for achieving high-yield solar steam generation via the synergy of 2D nanostructure-embedded all-in-one hybrid hydrogel evaporator and surface patterning is reported. This improved surface-patterned evaporator is able to simultaneously lower the enthalpy of vaporization and induce the Marangoni effect near the evaporation surface, thus delivering a high evaporation rate of 3.62 kg m-2 h-1, which is more than twice the theoretical limit of the normal 2D photothermal evaporator. This hybrid hydrogel offers a cost-effective and energy-efficient pathway to mitigate clean water shortages.

15.
J Am Chem Soc ; 143(20): 7819-7827, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33983725

RESUMO

Product selectivity in multielectron electrocatalytic reactions is crucial to energy conversion efficiency and chemical production. However, a present practical drawback is the limited understanding of actual catalytic active sites. Here, using as a prototype single-atom catalysts (SACs) in acidic oxygen reduction reaction (ORR), we report the structure-property relationship of catalysts and show for the first time that molecular-level local structure, including first and second coordination spheres (CSs), rather than individual active atoms, synergistically determines the electrocatalytic response. ORR selectivity on Co-SACs can be tailored from a four-electron to a two-electron pathway by modifying first (N or/and O coordination) and second (C-O-C groups) CSs. Using combined theoretical predictions and experiments, including X-ray absorption fine structure analyses and in situ infrared spectroscopy, we confirm that the unique selectivity change originates from the structure-dependent shift of active sites from the center Co atom to the O-adjacent C atom. We show this optimizes the electronic structure and *OOH adsorption behavior on active sites to give the present "best" activity and selectivity of >95% for acidic H2O2 electrosynthesis.

16.
Angew Chem Int Ed Engl ; 60(25): 14131-14137, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33855782

RESUMO

Present one-step N2 fixation is impeded by tough activation of the N≡N bond and low selectivity to NH3 . Here we report fixation of N2 -to-NH3 can be decoupled to a two-step process with one problem effectively solved in each step, including: 1) facile activation of N2 to NOx - by a non-thermal plasma technique, and 2) highly selective conversion of NOx - to NH3 by electrocatalytic reduction. Importantly, this process uses air and water as low-cost raw materials for scalable ammonia production under ambient conditions. For NOx - reduction to NH3 , we present a surface boron-rich core-shell nickel boride electrocatalyst. The surface boron-rich feature is the key to boosting activity, selectivity, and stability via enhanced NOx - adsorption, and suppression of hydrogen evolution and surface Ni oxidation. A significant ammonia production of 198.3 µmol cm-2 h-1 was achieved, together with nearly 100 % Faradaic efficiency.

17.
Adv Sci (Weinh) ; 8(7): 2002501, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33854876

RESUMO

Interfacial solar steam generation is a highly efficient and sustainable technology for clean water production and wastewater treatment. Although great progress has been achieved in improving evaporation rate and energy efficiency, it's still challenging to fully eliminate the energy loss to the surrounding environment during solar steam generation. To achieve this, a novel heatsink-like evaporator (HSE) is developed herein. During solar evaporation, the temperature on the top solar evaporation surface can be regulated by the fin structures of the HSE. For the evaporators with 5 to 7 heatsink fins, the temperature of the solar evaporation surface is decreased to be lower than the ambient temperature, which fully eliminates the radiation, convection, and conduction heat losses, leading to the absolute cold evaporation over the entire evaporator under 1.0 sun irradiation. As a result, massive energy (4.26 W), which is over 170% of the received light energy, is harvested from the environment due to the temperature deficit, significantly enhancing the energy efficiency of solar steam generation. An extremely high evaporation rate of 4.10 kg m-2 h-1 is realized with a 6-fin photothermal HSE, corresponding to an energy conversion efficiency far beyond the theoretical limit, assuming 100% light-to-vapor energy conversion.

18.
Sci Bull (Beijing) ; 66(24): 2479-2488, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654207

RESUMO

Interfacial solar steam generation is an efficient water evaporation technology which has promising applications in desalination, sterilization, water purification and treatment. A common component of evaporator design is a thermal-insulation support placed between the photothermal evaporation surface and bulk water. This configuration, common in 2-dimensional (2D) evaporation systems, minimizes heat loss from evaporation surface to bulk water, thus localizing the heat on the evaporation surface for efficient evaporation. This design is subsequently directly adopted for 3-dimensional (3D) evaporators without any consideration if it is appropriate. However, unlike 2D solar evaporators, the 3D evaporators can also harvest additional energy (other than solar light) from the air and bulk water to enhance evaporation rate. In this scenario, the use of thermal insulator support is not proper since it will hinder energy extraction from water. Here, the traditional 3D evaporator configuration was completely redesigned by using a highly thermally conductive material, instead of a thermal insulator, to connect evaporation surfaces and the bulk water. Much higher evaporation rates were achieved by this strategy, owing to the rapid heat transfer from the bulk water to the evaporation surfaces. Indoor and outdoor tests both confirmed that evaporation performance could be significantly improved by substituting a thermal insulator with thermally conductive support. These findings will redirect the future design of 3D photothermal evaporators.


Assuntos
Vapor , Água , Animais , Regulação da Temperatura Corporal , Condutividade Elétrica , Estro
19.
ACS Appl Mater Interfaces ; 13(1): 1872-1882, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33372761

RESUMO

Although noble metal or non-noble metal-catalyzed reactions are widely used, it is still difficult to apply these reactions in the large-scale synthesis of chemicals because most of the reactions are carried out by the inefficient batch reaction strategy. Herein, Pickering emulsion-based continuous flow catalysis was utilized to address this problem. Cellulose nanofibers with aldehyde groups (ACNF) were generated through oxidizing C2 and C3 hydroxyl groups of cellulose nanofibers into aldehyde groups by NaIO4, followed by in situ depositing Ag nanoparticles on ACNF to produce Ag-decorated ACNF (ACNF@Ag) via a facile aldehyde-induced reduction method. ACNF@Ag with ∼2 wt % Ag (ACNF@Ag2) has been used to prepare the Pickering emulsion by controlling the electrostatic interaction between ACNF@Ag2 and the oil-water interface via adjusting the pH. It was found that the Pickering emulsion could be generated at a pH around 3.29 and was determined to be the oil-in-water emulsion. The reduction of organic molecules (4-nitrophenol (4-NP), methylene blue (MB), and methyl orange (MO)) was selected as a model reaction to test the reliability of the Pickering emulsion in continuous flow catalysis, which demonstrated very high conversion rates for 4-NP (>98%, 50 h), MB (>99%, 30 h), and MO (>96%, 40 h).

20.
Chem Commun (Camb) ; 56(76): 11275-11278, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32832952

RESUMO

Highly selective CO2 electroreduction to CO (∼90% faradaic efficiency) was achieved on NiCu0.25 bimetallic nanoparticle catalysts. By combining Synchrotron based X-ray absorption and in situ Raman spectroscopy studies, we found that there is a negative correlation between the Cu content in NiCux and CO selectivity due to redistribution of the 3d electrons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...